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Intrinsic Josephson-junction stacks realized in high-temperature superconductors provide a very attractive
base for developing coherent sources of electromagnetic radiation in the terahertz frequency range. A promis-
ing way to synchronize phase oscillations in all the junctions is to excite an internal cavity resonance. We
demonstrate that this resonance promotes the formation of an alternating coherent state, in which the system
spontaneously splits into two subsystems with different phase-oscillation patterns. There is a static phase shift
between the oscillations in the two subsystems, which changes from 0 to 2� in a narrow region near the stack
center. The oscillating electric and magnetic fields are almost homogeneous in all the junctions. The formation
of this state promotes efficient pumping of the energy into the cavity resonance leading to strong resonance
features in the current-voltage dependence.
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I. INTRODUCTION

High-temperature layered superconductors, such as
Bi2Sr2CaCu2O8 �BSCCO�, are composed of two-dimensional
superconducting CuO2 layers coupled via the Josephson
effect.1 The large packing density of the intrinsic junctions
makes these compounds very attractive for developing co-
herent generators of electromagnetic radiation based on the
ac Josephson effect. Moreover, a large value of the supercon-
ducting gap allows to bring the operation frequency of po-
tential devices into the practically important terahertz range.
To develop a powerful source, the major challenge is to syn-
chronize the oscillations of the superconducting phases in a
large number of junctions. One possible way to synchroniza-
tion is to use interactions between the junctions due to gen-
erated external radiation.2 In this case, for efficient coupling
to the radiation field, a junction stack �mesa� must have small
lateral size ��10 �m� and contain a very large number of
junctions ��104�. Such mesa would be a frequency-tunable
source with the maximum power conversion efficiency up to
30%. The obvious technological challenge of this design is a
requirement to fabricate mesa with such large number of
almost identical junctions.

A very promising different route to efficient synchroniza-
tion is to excite an internal cavity resonance in finite-size
mesas,3,4 which can entrain oscillations in a very large num-
ber of junctions. The frequency of this so-called in-phase
Fiske mode is set by the lateral size of the mesa, which has to
be rather wide �40–100 �m�. The experimental demonstra-
tion of this mechanism3 has brought the quest for supercon-
ducting terahertz sources to a new level.

In general, a mechanism of pumping energy into the cav-
ity mode is a nontrivial issue. Homogeneous phase oscilla-
tions at zero magnetic field do not couple to the Fiske modes.
Such coupling can be facilitated by introducing an external
modulation of the Josephson critical current density.4 In this
case the amplitudes of the generated standing wave and of
the produced radiation are proportional to the strength of
modulation.

In this paper we explore an interesting alternative possi-
bility. Numerically solving the dynamic equations for the

Josephson-junction stacks, we found that near the resonance
an inhomogeneous synchronized state is formed. In this
state, the system spontaneously splits into two subsystems
with different phase-oscillation patterns formally corre-
sponding to fluxon-antifluxon oscillations.

Inspired by numerics, we also succeeded to build such
solution analytically. The phase oscillations in two sub-
systems have a static phase shift which has a soliton-shape
coordinate dependence, changing from 0 at one side to 2� at
other side �phase kink�. This change occurs within the nar-
row region near the center of the stack and the width of this
region shrinks when approaching to the resonance. In spite
of the difference in the phase-oscillation patterns for the two
subsystems, the oscillating electric and magnetic fields are
almost identical in all the junctions. Independently, such state
was also reported by Lin and Hu.5 The formation of this state
strongly enhances coupling to the resonance mode and pro-
motes efficient pumping of energy into the cavity resonance.

II. DYNAMIC EQUATIONS

The dynamic equations for the Josephson-junction stacks
have been derived in Ref. 6 and have been used in numerous
theoretical studies.7 We present these equations in the form
of coupled time-evolution equations for reduced electric and
magnetic fields en and hn, phase differences �n, and the in-
plane phase gradients kn,

�en

��
= − �cen − g�u�sin 	n +

�hn

�u
+ j̃z�u,n,�� , �1a�

�	n

��
= en, �1b�

�ab
�kn

��
= − �kn + hn − hn−1� + j̃ab�u,n,�� , �1c�

hn = �2� �	n

�u
− kn+1 + kn� . �1d�
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The units and definitions of parameters are summarized in
Table I and its caption. These reduced equations depend on
three parameters: �c=4�
c /�c�p, �ab=4�
ab /�c�p
2, and
�=� /s, where 
c and 
ab are components of the quasiparti-
cle conductivity. We also include possible noise currents
j̃z�u ,n , t� and j̃ab�u ,n , t�, which are defined by the correlation
functions as

� j̃z�0,0,0� j̃z�u,n,��� = 2�cT̃��u��n���� ,

� j̃ab�0,0,0� j̃ab�u,n,��� = 2�abT̃��u��n���� .

The noise amplitude is determined by the effective tempera-

ture T̃. We neglected the in-plane displacement current,
which would give a term 	�2kn /��2, because relevant fre-
quencies are much smaller than the in-plane plasma fre-
quency. The time-evolution presentation of the dynamic
equations �1a�–�1d� allows for straightforward numerical
implementation, which is discussed in the Appendix.

We simulated a stack containing N junctions �1�n�N�,
having a width of L�J �0�u�L�, and assuming that the
dynamic state is homogeneous in the third direction. We
study the voltage range corresponding to the Josephson fre-
quencies close to the lowest in-phase resonance frequency
�1=�� /L. The function g�u�=1−2r�u−L /2� /L in Eq. �1a�
describes a linear modulation of the Josephson current den-
sity, which provides coupling to this mode for c-axis homo-
geneous oscillations.4 Realistic simulations have to take into
account boundary conditions accounting for radiation.4 How-
ever, for short mesas, N�100, the radiation influences
weakly the structure of internal dynamic states. As our pur-
pose is to probe the qualitative structure of these states, we
use simple nonradiative boundary conditions at the edges:
kn=0 and ��n /�u= � I /2�2 for u=0,L, where I is the trans-
port current flowing through the stack. We also assume me-
tallic contacts at the top and the bottom: k0=kN+1=0.

III. NUMERICAL RESULTS

Figure 1 shows the current-voltage dependences �CVDs�
obtained for representative system parameters listed in the
plot and for two values of the modulation parameter r=0 and
0.4. These dependences have been obtained with increasing
current and without noise. We observe a strong resonance
enhancement of the current due to the excitation of the inter-
nal cavity resonance. Without noise, the emerging state is
sensitive to the initial configuration. If we start with a c-axis
homogeneous state, it remains homogeneous up to certain
current. In this case the resonance is excited due to the finite
modulation and it is well described by theory developed in

Ref. 4. However, if we add a small n-dependent perturbation
to the phase at the start of every current run, the homoge-
neous state blows up and the system organizes itself into a
coherent inhomogeneous state. We also studied a system
without modulation using an inhomogeneous state as initial
state and found that the corresponding CVD is practically
undistinguishable from the one for the modulated system.
Therefore, the modulation of the critical current density trig-
gers the transition to the inhomogeneous state; but once be-
ing formed, this state is not sensitive to the modulation any
more.

To understand the nature of the inhomogeneous state, we
show in Fig. 2 the time evolution of the phase and electric
field for the eight bottom junctions for j=0.18. We see that
the system splits into two alternating subsystems with differ-
ent phase dynamics, corresponding to fluxon-antifluxon os-
cillations. In the first half period vortices nucleate at the left
side in even junctions, rapidly move to the center, then, after
slow motion near the center, rapidly annihilate at the right
side. Immediately after that, in the second half period, anti-
vortices nucleate at the right side in the odd junctions, move
to the left in a similar way, and annihilate at the left side.
Inspite of the difference in the phase dynamics between the
two subsystems, the electric and magnetic fields are almost
identical in all junctions. For the electric field, this can be
seen from the lower plots of Fig. 2. The dominating contri-

TABLE I. Units of physical variables. Here �p is plasma frequency, �J is the Josephson length, s is the
interlayer period, � is the in-plane London penetration depth, 
 is the anisotropy factor, and jJ is the
Josephson current density.

Variable Time � Coordinate u Phase gradient kn Electric field en Magnetic field hn Current density j

Unit 1 /�p �J 1 /�J �0�p /2�cs �0 /2�
�2 jJ

0.12

0.14

0.16

0.18

0.2

12.2 12.3 12.4 12.5 12.6

r=0.4, Numerical
r=0.4, Theory

r=0.4, Numerical
r = 0, Numerical
Theory

j

V

N=50, L=25,  =100,�c=0.01, �ab=0.2

Homogeneous State

Inhomogeneous State

FIG. 1. �Color online� Simulated and theoretical CVDs in the
vicinity of the resonance voltage for different states with V= �en�
=�. Small circles show the dependence obtained for r=0.4 and
c-axis homogeneous initial state, which remains homogeneous with
increasing current. The theoretical CVD for this state �Ref. 4� is
shown by gray dashed line. Small filled diamonds show the CVD
for r=0.4 and inhomogeneous state, which was self-generated when
small n-dependent perturbation was added to the phase in the be-
ginning run for each current value. The open squares represents the
CVD for r=0 when the inhomogeneous state has been used as the
initial state at starting current. The inhomogeneous state is not sen-
sitive to modulation. Dotted black line shows the theoretical curve
for the inhomogeneous state based on Eqs. �6� and �13�.
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bution to the oscillating electric field is given by the funda-
mental cavity mode en�cos��u /L�.

The homogeneity of the electric field implies that there is
a static phase shift between the phase oscillations in the two
subsystems. Figure 3 shows the cosine of half of this phase
shift at different currents. One can see that the phase shift has
the shape of a soliton and its width shrinks with increasing
current.

A. Influence of noise

We studied stability of the alternating state with respect to
the thermal noise. Figure 4 shows the current-voltage depen-
dences for different values of the effective temperature. All

other parameters are the same as in Fig. 1 and the Josephson
coupling is homogeneous, r=0. We found that in the pres-
ence of noise the system spontaneously transfers into the
alternating state, indicating stability of this state. With in-
creasing noise, the resonance current enhancement at a given
voltage is suppressed and maximum achievable current also
decreases. Nevertheless, the coherent state survives up to a
rather high level of noise.

Note that the noise in our two-dimensional model is not
fully realistic. In real mesas, the thermal noise immediately
induces dependence of the variables on the third coordinate
and this makes the system three dimensional. The influence
of noise is presented here only for as a check for stability and
for qualitative illustration. The temperature has to be consid-
ered as effective parameter controlling the strength of noise.

IV. ANALYTICAL SOLUTION

To study the dynamic state analytically, we assume that
the system is split into two alternating subsystems: �2m+1
=�1 and �2m=�2.9 Introducing new variables �+= ��1
+�2� /2 and �−=�2−�1 and excluding other variables, we
derive from Eq. �1� for ��1

�2�+

��2 + �c
��+

��
− �2�2�+

�u2 = − sin �+ cos��−/2� , �2a�

�2�−

��2 + �c
��−

��
−

1

4
�1 + �ab

�

��
� �2�−

�u2 = − 2 sin��−/2�cos �+.

�2b�

We now obtain a self-consistent approximate solution of
these equations for the dynamic state when the Josephson
frequency �= �en� is close to the resonance frequency �1
=�� /L. We will show that �− is almost static. In this case the
equation for �+ coincides with the phase equation for the
Josephson junction with modulated Josephson current
density4 with modulation function g�u�=cos��− /2� �see Fig.
3�. Near the resonance frequency, we make the mode projec-
tion for �+,

�+�u,�� 
 �� + Re�� exp�− i����cos��u/L� , �3�

and, assuming ����1, we obtain

� 

ig−

�2 − �1
2 + i�c�

�4�

with

g− =
2

L
�

0

L

cos��u/L�cos��−/2�du �5�

being the coupling parameter. This solution determines the
CVD, which takes into account resonance enhancement of
the Josephson current �j
�cos��− /2�sin �+� �Ref. 4� as

j�V� 
 �cV +
g−

2�cV/4
��1

2 − V2�2 + ��cV�2 . �6�

FIG. 2. �Color online� Snapshots of the phase and electric-field
configurations in the eight bottom junctions for the same parameters
as in Fig. 1 and j=0.18 marked by the arrow �see also animations in
Ref. 8�. The phases are reduced to the interval �−� ,��, so that
jumps formally correspond to centers of the Josephson vortices. The
dynamic state corresponds to alternating nucleation, motion, and
annihilation of vortices in the even junctions and antivortices in the
odd junctions. Vortex velocities near the edges much larger than
near the center. In between third and 4th configurations, jumplike
annihilation of fluxons and nucleation of antifluxons take place at
the right side. The lower plots show that the electric field is homo-
geneous in all junctions and has space-time dependence correspond-
ing to the fundamental mode. The annihilation and nucleation
events correspond to maxima of electric fields at the edges.

-1

-0.5

0

0.5

1

8 10 12 14 16 18

j = 0.13
0.15
0.20

j = 0.13, theory

co
s(
� �
/2
)

u
FIG. 3. �Color online� Cosine of half static phase shift between

phases in two subsystems at different currents. One can see that the
phase shift has shape of soliton �kink� and it narrows with ap-
proaching to the resonance. The solid line shows theoretical curve
based on Eq. �12� and using Eqs. �9�, �10�, and �13� for j=0.13.
This function determines the coupling of the homogeneous Joseph-
son oscillations to the internal resonance mode.
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To evaluate �−�u ,��, we split it into static and dynamic
parts: �−�u ,��= �̄−�u�+ �̃−�u ,��. Further analysis shows that
�̃−�u ,���1. The static part is determined by

d2�−/du2 − 8C+�u�sin��−/2� = 0 �7�

with C+�u�
�cos �+�. Using Eqs. �3� and �4�, we obtain

C+�u� 
 C1 cos��u/L� �8�

with

C1 = −
Im���

2
= −

g−

2

�2 − �1
2

��2 − �1
2�2 + ��c��2 . �9�

Consider the region near the midpoint u=L /2, where the
static cosine can be approximated by the linear function
C+�u�
C1�� /L��L /2−u�. Using the substitution

v = �u − L/2�/ls, ls = �L/8�C1�1/3, �10�

we can reduce Eq. �7� near the midpoint to the dimensionless
form

d2�−/dv2 + v sin��−/2� = 0. �11�

This equation allows for the soliton solution in which �−
changes from 0 to 2� within �v�	1, corresponding to �u
−L /2�	 ls, and has the symmetry �−�v�=2�−�−�−v�. Typi-
cally, ls�L meaning that the linear expansion for C+�u� is
valid in the soliton core and Eq. �11� accurately determines
its shape. Numerically solving Eq. �11�, we interpolate the
solution as

�−�v� 
 � exp�− ��2/3����v� + Cv�3/2 − Cv
3/2�� �12�

for v�0 with Cv
0.5129.
To evaluate the coupling constant �5�, we note that

cos��− /2� changes from 1 to −1 within a narrow region near
the midpoint �u−L /2�	 ls meaning that, up to terms
	�ls /L�2, cos��− /2� can be approximated by sgn�L /2−u�
which gives g−
4 /�. Surprisingly, this self-generated step-

like modulation provides the maximum possible coupling to
the resonance mode. Correction to g− of the order of �ls /L�2

due to the finite soliton width can be evaluated as

�g− =
4

L
�

0

L/2

cos��u

L
��cos

�−

2
− 1�du 
 − 0.464

4�ls
2

L2 .

Adding this correction and using Eqs. �9� and �10�, the total
coupling parameter can be written as

g− 

4

�
�1 − 1.817� ��1

2 − �2�L2

��2 − �1
2�2 + ��c��2�−2/3� . �13�

As g−	1, the used linear approximation ����1 is valid only
at ��2−�1

2��1.
To evaluate the time-dependent part of �−, we represent it

in the complex form �̃−�� ,u�=Re��̃−�u�exp�−i����, and
separating the time-dependent part of Eq. �2b�, we derive the
equation for the complex amplitude

��2 + i�c���̃− +
1 − i�ab�

4

�2�̃−

�u2 = 2 sin
�̄−

2
.

For ��1, we estimate �̃−
2 sin��̄− /2� /�2�1, which jus-
tifies usage of the static approximation for �−.

In Fig. 3 we present the theoretical result for cos��− /2� at
j=0.13 based on Eq. �12�. It accurately describes the numeri-
cal data. The theoretical prediction for the CVD based on
Eqs. �6� and �13� is shown in Fig. 1. The linear approxima-
tion describes well the numerical data for voltages not too
close to the resonance. Due to the enhancement of nonlin-
earities in the vicinity of the resonance, the analytical result
overestimates the current increase.

V. DISCUSSION

The found state looks similar to the fluxon-antifluxon os-
cillations in a single junction.10 These oscillations appear as
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0.28
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j

V
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0.14
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0.19

0.2

12 12.5 13 13.5

T = 0
0.2
0.4
0.6

0.8
0.8 down
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j

V

N=50, L=25, l =100,
�c=0.01, �ab=0.2, r=0

FIG. 4. �Color online� Influence of thermal noise on the current-voltage dependences. The left plot shows behavior near the resonance
while the right plot shows the current-voltage dependences in the extended range �the dotted rectangle marks the region shown in the left

plot�. Most dependences are obtained with increasing the current. The left plot also shows decreasing current scans for T̃=0.6 and 0.8. The
coherent state survives up to certain value of current, which is suppressed by noise. At this current the system typically jumps into incoherent

state. For T̃=0.2 the system jumps to the higher-resonance state.
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a result of a parametric instability of the homogeneous
oscillations11 and lead to the so-called zero-field steps in the
CVDs.12 The Josephson frequency of such step is twice the
frequency of the involved resonance. In spite of the apparent
similarity, there are essential qualitative differences. In our
case, the frequency coincides with the resonance frequency.
The dynamic configurations are also very different. In the
case of a single junction, a well-developed fluxon nucleates
at one side, moves with Swihart velocity to the other side,
and converts to the antifluxon there, which then moves back
again with constant velocity.10 In our case, there is a region
statically located near the center where rapid phase change
�� is localized corresponding to 2� phase change in �−. As
a consequence, the centers of fluxons and antifluxons, for-
mally defined as points where the phases are commensurate
with ��, spend most time near the center and very rapidly
jump to and from the edges �see Fig. 2�. Moreover, the
fluxon interpretation of our oscillations is somewhat artifi-
cial, as there are no well-defined localized soliton excitations
moving across the junctions.

The alternating state is a plausible candidate for the co-
herent state responsible for resonant terahertz emission re-
ported in Ref. 3. Even though we did not use boundary con-
ditions accounting for the radiation, it is clear that the
generation of such state would lead to powerful emission. In
fact, for short mesas the radiation influences weakly the
structure of the internal states and therefore it cannot destroy
the coherent state. The emission can be approximately com-
puted from the oscillating electric fields at the edges.4 The
radiation may contribute to the resonance damping in the
mode amplitude �4�. This contribution can be taken into ac-
count by adding to �c the radiation-damping term.4 The ex-
perimental resonance features in the CVDs are much weaker
then the theoretical ones. The possible mechanisms reducing
the amplitude of the resonance include noise, c-axis inhomo-
geneities, and additional damping channels not taken into
account by the theoretical model.
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APPENDIX: NUMERICAL PROCEDURE

We implement numerical solution of Eq. �1� as follows.
Space and time discretization is performed using staggered
grid. For coordinate, 	n�u ,�� and en�u ,�� are defined at the
points u= �j−1 /2�du, while kn�u ,�� and hn�u ,�� are defined
at the points u= jdu �see Fig. 5�. For time, en is defined at
�=md� while 	n, kn, and hn are defined at �= �m+1 /2�d�;

	n,j
m+1/2 = 	n��j − 1/2�du,�m + 1/2�d�� ,

en,j
m = en��j − 1/2�du,md��, 1 � j � J ,

kn,j
m+1/2 = kn��j − 1�du,�m + 1/2�d�� ,

hn,j
m+1/2 = hn��j − 1�du,�m + 1/2�d��, 1 � j � J + 1.

We discretize equations as

en,j
m+1 − en,j

m

d�

= − �c

en,j
m+1 + en,j

m

2
− gj sin 	n,j

m+1/2 +
hn,j+1

m+1/2 − hn,j
m+1/2

du

+ j̃z,n,j
m+1/2, �A1�

	n,j
m+3/2 − 	n,j

m+1/2

d�

= en
m+1, �A2�

kn,j
m+3/2 − kn,j

m+1/2

d�

= −
1

�ab
� kn,j

m+3/2 + kn,j
m+1/2

2
+

hn,j
m+3/2 + hn,j

m+1/2

2

−
hn−1,j

m+3/2 + hn−1,j
m+1/2

2
+ j̃ab,n,j

m+1 � , �A3�

hn,j
m+3/2 = �2�	n,j

m+3/2 − 	n,j−1
m+3/2

du
− kn+1,j

m+3/2 + kn,j
m+3/2� , �A4�

where j̃z,n,j
m+1/2 and j̃ab,n,j

m+1 are independent Gaussian variables
with �� j̃z,n,j

m+1/2�2�=2�cT /dud� and �� j̃ab,n,j
m �2�=2�abT /dud�.

The first two equations allow for direct time advance of
en,j and 	n,j,

en,j
m+1 = � 1

d�

+
�c

2
�−1�� 1

d�

−
�c

2
�en,j

m − gj sin 	n,j
m+1/2

+
hn,j+1

m+1/2 − hn,j
m+1/2

du
+ j̃z,n,j

m+1/2� ,

	n,j
m+3/2 = 	n,j

m+1/2 + d�en
m+1.

Substitution of hn,j
m+3/2 and hn−1,j

m+3/2 from Eq. �A4� into Eq. �A3�
leads to the tridiagonal linear system for kn,j

m+3/2,

1

2

n

n+1

N+1

N

1 2

1 2

n-1
j+1j

j

J+1
Jj-1 j+1

�n,j , en,jkn,j hn,j

FIG. 5. �Color online� Illustration of the discretization
scheme.
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�2kn+1,j
m+3/2 − �1 +

2�ab

d�

+ 2�2�kn,j
m+3/2 + �2kn−1,j

m+3/2

= �1 −
2�ab

d�
�kn,j

m+1/2

+ �2	n,j
m+3/2 − 	n,j−1

m+3/2 − 	n−1,j
m+3/2 + 	n−1,j−1

m+3/2

du

+ hn,j
m+1/2 − hn−1,j

m+1/2 + 2 j̃ab,n,j
m+1

for n=2, . . . ,N with k1,j
m+3/2=0 , kN+1,j

m+3/2=0. Solving this sys-

tem, we advance kn,j. After finding kn,j
m+3/2, we update hn,j

m+3/2

using Eq. �A4�.
This implicit numerical scheme is expected to be stable

up to d��du /�. We typically used 400 mesh point per layer

and the time step d�=0.3du /�
2�10−4. The total simula-

tion time is typically 200 in reduced units for every current
point.
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